$$
\text { YEAR } 8 \text { - PROPORTIONAL }
$$

@whisto_maths

\title{

YEAR 8 - REPRESENTATIONS... Representing Data

@whisto maths

@whisto maths

What do I need to be able to do?

By the end of this unit you should be abe to.

- Draw and interppet scater graphs
- Describe correlation and relationships.
- dentify different types of non-Inear relationships
- Desian and complete an ungrouped frequency table
I-Read and interpret grouped tables (discrete and contincous data)
I - Represent data in two way tables.

Keywords

Variable: a quantity that may change within the context of the problem
Relationship: the link between two variables (tems). Eg. Between sunny days and ice cream sales Correlation: the mathematical definition for the type of relationship.
I Origin: where two axes meet on a graph
I Line of best fit: a straight line on a graph that represents the data on a scatter graph
Outlier: a point that lies outside the trend of graph
Quantitative: numerical data
Qualitative: descriptive information, colours, genders, names, emotions etc.
I Continuous: quantitative data that has an infinite number of possible values within its range.
I Discrete: quantiative or qualitative data that only takes certain values.
Frequency: the number of times a particular data value occurs.

Ungrouped Data
IThe number of times an
event happened 2 people had 0 sibings. This means the
are 0 siblings to be counted here

The table shows the number of siblings students have. The answers were
$3,1,2,2,0,3,4,1,1,2,0,2$
2 people had 0 siblings. This means ther

2 people have 3 sibings so there are 6
siblings in total
Best represented by discrete data (Not aways a number)
OVERQLL there are $0+3+8+6+4$ Siblings $=21$ sibings

Grouped Data

better to group it This is so it is easier to look for a trent form | groups of equal size to make comparison more valid and spread the groups out from the smallest to the largest value.

	Cost of TV ($£$)	Tally	Frequency
	101-150	Tack 11	7
	151-200	Trace Tas 1	11
	201-250	Tinc.	5
	251-300	111	3

We do not know the exact value of each item in a group - so an estimate would be bused to calculate the overall total (Midpoint)
Continuous Data
To make sure al values are
ncloded nequalties represent
the subgroups

YEAR 8 - REPRESENTATIONS... Tables and Probability

Keywords
 I Outcomes: the result of an event that depends on probability.
 I Probability: the chance that something will happen
 Set: a collection of objects.

- Systematicaly list outcomes.
- Find the probabiliy from two-way tables.
- Find the probability from Venn diagrams

This is the set notation to list the outcomes $S=$

$S=\{\mathbb{H}, 2 H, 3 H, 4 H, 5 H, 6 H, I T, 2 T, 3 T, 4 T, 5 T, 6 T\}$

In between the $\}$ are a, the possible outcomes

Probability from sample space

The possible outcomes from roling a dice

		1	2	3	4	5	6
	H	I,H	2,H	3, H	4,H	5, H	6, H
	T	I, T	(2,	3,T	4.T)	5.	(6, 5

The possible outcomes from roling a dice

	1	2	3	4	5	6
H	I, H	$2, H$	$3, H$	$4, H$	$5, H$	$6, H$
T	,T	$2, T$	$3, T$	$4, T$	$5, T$	$6, T$

Sample space diagrams provide a systematic way to display outcomes from events

Construct sample space diagrams

What is the probability that an outcome has an even number and a tails?
Probability from two-way tables

	Car	Bus	Wak	Total
Boys	15	24	14	53
Girls	6	20	21	47
Total	21	44	35	100

Probability from Venn diagrams
$P($ Girl wak to school $)=\frac{21 .}{100}$.

There are three even numbers with
Even numbers winh
tails
Numerator:
the event
Therememinator: are tweve of outcomes
possible outcomes

Product Rue

The number of items in event b

This whole curve includes

Swimming OND badminton

100 students were questioned if they played badminton or went to swimming club.
40 went swimming, 25 went to badminton and 11 went to both.

What do I need to be able to do？
By the end of this unit you should be able to：
－Generate a sequence from term to term or postion to term rules
－Recognise arthmetic sequences and find the nth term
－Recognise geometric sequences and other sequences that arise
1 I $\overline{\text { Keywords }}$
I
I Sequence：items or numbers put in a pre－decided order
I
I Term：a single number or variable
I Position：the place something is located
I I Linear：the difference between terms increases or decreases（＋or－）by a constant value each time
I I Non－inear：the difference between terms increases or decreases in different amounts，or by x or \div
II
I Difference：the gap between two terms
I arithmetic：a sequence where the difference between the terms is constant
I Geometric：a sequence where each term is found by muttiplyng the previous one by a fixed non zero I I number

Keywords
I I Sequence：tems or numbers put in a pre－decided order
Term：a single number or variable
Position：the place something is located
I I Linear：the difference between terms increases or decreases（＋or－）by a constant value each time
I I Non－Iinear：the difference between terms increases or decreases in different amounts，or by x or \div
1 Difference：the gap between two terms
1）arithmetic：a sequence where the difference between the terms is constant
I I Geometric：a sequence where each term is found by multiplying the previous one by a fixed non zero

ᄂニニニニニニニニニニニニニコ느＝＝＝＝＝＝

Linear and Non Linear Sequences

Linear Sequences－increase by addition or subtraction and the same amount each time ｜Non－linear Sequences－do not increase by a constant amount－quadratic，geometric I and Fibonacci．
I－Do not plot as straight lines when modelled graphically
｜－The differences between terms can be found by addition，subtraction，muttiplication or division．

Fibonacci Sequence－look out for this type of sequence

Each term is the sum of the previous two terms．

Sequences from algebraic rules This is substitution！

This will be linear－note the single power of n The values increase at a constant rate

$$
2 n-5 \longrightarrow
$$

Substitute the number of the term you are looking for
eg
pt term $=2(1)-5=-3$
$2^{\text {nd }}$ term $=2(2)-5=-1$
$100^{\text {th }}$ term $=2(100)-5=195$
Checking for a term in a sequence form an equation
is 201 in the sequence $3 n-4$ ？
in place of＇n＇
$3 n^{2}+7$
This is not linear as there is a power for n

Solving this will find the position of the term in the sequence I ONLY an integer solution can be in the sequence I

is linear－as seen in the graph

II Complex algebraic rules Misconceptions and comparisons

Finding the algebraic rule
times table

This has the same constant difference－but is 3 more than the original sequence

$$
4 n+3
$$

yeAr 8 - AlgeBRalc techniQues...
@whisto_maths

Indices

What do I need to be able

 to do?By the end of this unit you should be able to:

- Odd/ Subtract expressions with indices
- Mutiply expressions with indices
- Divide expressions with indices
- Know the addition law for indices
- Know the subtraction law for indices

Keynords

Base: The number that gets mutiplied by a power
Power: The exponent - or the number that tells you how many times to use the number in multiplication
Exponent: The power - or the number that tells you how many times to use the number in mutipication
I Indices: The power or the exponent.
I Coeffcient: The number used to mutiply a variable
Simpify: To reduce a power to its lowest term
Product: Mutiply

Iadodion Subtraction with indices

Divide expressions with indices

Cross cancelling factors shows cancels the expression

This expression cannot be divided (cancelled down) because there are no common factors or similar terms

Mutiply expressions with indices

	$4 b \times 3 a$
\equiv	$5 t \times 9 t$
\equiv	$5 \times 3 \times 3 \times a$
\equiv	$\equiv 5 \times t \times 9 \times t$
$\equiv 12 a b$	$\equiv 5 \times 9 \times t \times t$

$2 b^{4} \times 3 b^{2}$
$\equiv 2 \times b \times b \times b \times b \times 3 \times b \times b$
$\equiv 2 \times 3 \times b \times b \times b \times b \times b \times b$
$\equiv 6 b^{6}$

here are often misconceptions with this calculation but break down
the powers

Oadtion Subtraction laws for indices
$3^{5} \times 3^{2}$

$1=(3 \times 3 \times 3 \times 3 \times 3) \times(3 \times 3)$
I The base number is all the same so the terms
can be simplified

addition law for indices

$a^{m} \times a^{n}=a^{m+n}$

$$
3^{5} \div 3^{2} \longrightarrow 3^{3}
$$

Subtraction law for indices

$$
a^{m} \div a^{n}=a^{m-n}
$$

YEAR 8 - DEVELOPING NUMBER.

What do I need to be able to do?
 By the end of this unit you should be able to:
 - Convert between FDP less than and more than 100
 - Increase or decrease using mutipiers
 - Express an amount as a percentage
 - Find percentage change
 $=======$ Convert FDP
 U Using a calculator This will give you the answer in the simplest form
 Using a calculator This will give you the answer in the simplest form

 Convert FDP < and > 100%

 100 hundreaths 10 tenths 100%
 140 hundredths
 14 tenths
 $=7$ "tenths"
 Convert to a decimal

Keywords

Percent: parts per 100 - written using the \% symbol

Decimal: a number in our base 10 number system. Numbers to the right of the decimal place are called decimals.
Fraction: a fraction represents how many parts of a whole value you have.
Equivalent: of equal valve.
Reduce: to make smaller in value
Growth: to increase/ to grow.
Integer: whole number, can be positive, negative or zero.
Invest: use money with the goal of it increasing in value over time (ussally in a bank).

Fraction/ Percentage of amount

$\begin{array}{rl}£ 36 \\ \text { Remember } & 10 \% \text { of } £ 60 \\ \frac{3}{5}=60 \% & 50 \% \text { of } £ 60 \\ =£ 6\end{array} \quad \quad \quad \begin{gathered}\text { Remember }\end{gathered} \quad \begin{gathered}\frac{3}{5}=60 \%=0.6\end{gathered}$
60% of $£ 60$
$=0.6 \times 60$
$=£ 36$

Percentage decreass: Mütipiers

11

Increase by 12%

Mutipier

Express as a \% - Calculator
$\left.\left.\begin{array}{c}7 \text { per every } 10 \text { are orangee } \\ \frac{7}{10}\end{array}\right] \begin{array}{c}\text { This means that } 70 \text { per every } 100 \\ \text { are orange } \\ \frac{70}{100}\end{array}\right]$

Standard Form

\section*{What do I need to be able to do?
 By the end of this unit you should be able to:
 - Write numbers in standard form and as ordinary numbers
 - Order numbers in standard form
 I - add/ Subtract with standard from
 I Mutiply/ Divide with standard form
 I - Use a calculator with standard form
 Postive poneres of 10
 I billion - 1000000000
 $10 \times 10 \times 10=10^{9}$
 | addition rule for indices $10^{a} \times 10^{b}=10^{a b b}$ |
| :---: |
| Subtraction rule for indices $10^{a}-10^{b}=10^{a-b}$ |}

Keywords

Standard (index) Form: A system of writing very big or very small numbers
Commutative: an operation is commutative if changing the order does not change the result.
I Base: The number that gets mutipied by a power
I Power: The exponent - or the number that tells you how many times to use the number in mutipication I Exponent: The power - or the number that tells you how many times to use the number in multipication Indices: The power or the exponent.
Negative: a value below zero.

Numbers between 0 and

0.05.4		- $\frac{1}{10}$	$\frac{1}{100}$	$\frac{1}{1000}$
$I=5.4 \times 10^{-2}$	10^{0}	- ${ }^{10-1}$	10^{-2}	10^{-3}
\|	0	- 0	5	4

A negative power does not mean a negative
answer - it means a number closer to 0
i| Standard form with numbers >1 I Negative powers of $\overline{10}$

$\begin{aligned} & \text { I any number } \\ & \text { i between land } \\ & \text { I kssthan } 10 \rightarrow A \times 10^{n} \rightarrow \text { any integer } \\ & \text { il } \\ & \text { II Example } \\ & \text { il } \text { Non-example } \end{aligned}$			$\begin{aligned} & \mid l \\ & \|l\| 001 \\ & \left\|\left\lvert\, 1 \times \frac{1}{1000}\right.\right. \\ & \left\|\mid \times 10^{-3}\right. \end{aligned}{ }^{1}$		
$\begin{aligned} & =3.2 \times 10^{4} \\ & -\quad 11=3.2 \times 10 \times 10 \times 10 \times 10 \end{aligned}$				$\begin{aligned} & \text { eponeren } \\ & \text { valas } \end{aligned}$	
$\\|=32000$					
II Order numbers in standard form			10^{2}		
6.4×10^{-2}	2.4×10^{2}	3.3×10^{0}			
0.064	240				

Mental calculations

I Muttiplication and division $\frac{1.5 \times 10^{5}}{0.3 \times 10^{3}}$ Dusion questions
 $\left.(1.5) \times 10^{5}\right) \div(0.3) \times 10^{3} 1$
 $15-0.3 \times 10^{5}-10^{3}$

YEAR \& - DEVELOPING NUMBER... Number Sense

i What do I need to be able to do?
 By the end of this unit you should be able to:
 - Round numbers to powers of 10 and 1 sf
 - Round numbers to any dp
 - Estimate solutions
 I - Calculate using order of operations
 - Calculate with money units of measurement and time
 Keywords
 Significant: Place value of importance
 I Round: Making a number simpler but keeping its value close to what it was.
 I Decimal: Place holders after the decimal point.
 I Overestimate: Rounding up - gives a solution higher than the actual valve
 Underestimate: Rounding down - gives a solution lower than the actual valve.
 Metric: a sustem of measurement.
 | Balance: The amount of money in a bank account
 I Deposit: Putting money into a bank account
 $\stackrel{\text { measurement and time }}{ }=================$ Round to powers of 10 and I sig figure
 If the number is hafway between we "round up"
 5495 to the nearest 1000
 5475 to the nearest 100
 5475 to the nearest 10
 5470 个

370 to I significant figure is 400 37 to I significant figure is 40 3.7 to I significant figure is 4 0.37 to I significant figure is 0.4 0.00037 to I significant figure is 0.0004

Round to decimal places 2.46192
ITo Idp" - to one number after the decimal
I "To 2 dpp " to two numbers after the decimal
2.46192 (to ldp) - s this closer to 24 or 25
$24>2$

Order of operations

 Brackets operations in brackets are cataulated first I Other operations e e powers, roots,
Multiplication/Division

| They are carried out in the order from left to right in the | question
Oddition/ Subtraction
They are carried out in the order from left to right in the question

II Calculations with money
Metric measures of length
kilo $=1000 \times$ meter Centi $-\frac{1}{100} \times$ meter

II Time and the calendar
1

I Year- the amount of time it takes Earth to go around the sun 365 (and a quarter) days Leap Year - 366 days levery
 II Using a calculator - ensure you are working in the correct unts.
$£ 130+50 \mathrm{p}=130+50 \quad$ (n pence)
$=130+0.50$ (in pouinds)

2 dp

It is good to check all calculations with an estimate in all aspects of maths - it heps you identify calculation errors.

12 Months $=$ one year $=52$ weeks 31 days - Jan, March, May, July aug. Oct, Dec
30 days - April June, Sept, Nov
28 days - Feb (29 leap year)
1 week - 7 days
Monday, Tuesday, Wednesday,
Thursday Friday Saturday Sunday

1day-24 hours
Ihour - 60 minutes
1 minute - 60 seconds

> Use a number line for time calculations!

YEAR \& - DEVELOPING GEOMETRY... @whisto_maths angles in parallel lines and polygons

What do I need to be able to do?
 By the end of this unit you should be able to:
 - Identify alternate angles
 - Identify corresponding angles
 - Identify co-interior angles
 - Find the sum of interior angles in polygons
 - Find the sum of exterior angles in polygons
 - Find interior angles in regular polygons

I Keywords

I Parallel: Straight ines that never meet
angle: The figure formed by two straight ines meeting (measured in degrees)
Transversal: a line that cuts across two or more other (normally parallel) lines
I isosceles: Two equal size ines and equal size angles (in a triangle or trapezium)
I Polygon: a 2 D shape made with straight lines
I Sum: Addition (total of all the interior angles added together)
I Regular polygon: all the sides have equal length, all the interior angles have equal size.

Basic angle rules and notation R

Still remember to look for angles on straight ines, around a point and Lines AF and BE are transversal vertically oppositel!

This notation identifies parallel lines | alternate angles |
| :--- |
| often identified by |
| their " Z shape" in |
| position |

Co-interior angles

Because alternate angles are equal the highlighted angles are the same size

Because corresponding angles are equal the highlighted angles are the same size

Properties of Cuodthereos

Sum of interior angles

Interior angles

(number of sides - 2) $\times 180$

Sum of the interior angles $=(5-2) \times 180$

Each triangle has 180°

Sum of the interior angles $=3 \times 180$ $=540^{\circ}$

- the sides and angles are different sizes

Missing angles in regular polygons

$$
\text { Exterior angles in regular polygons }=360^{\circ} \div \text { number of sides }
$$

Interior angles in regular polygons $=($ number of sides -2$) \times 180$ number of sides

YEAR \＆－DEVELOPING gEOMETRY．．． area of trapezia and Circles

What do I need to be able

Ito do？

By the end of this unit you should be able to：
－Recal area of basic $2 D$ shapes
－Find the area of a trapezium
－Find the area of a circle
－Find the area of compound shapes
－Find the perimeter of compound shapes

Keywords

I Congrvent：The same
area：Space inside a 2D object
Perimeter：Length around the outside of a $2 D$ object
$\mathrm{Pi}(\boldsymbol{\pi})$ ：The ratio of a circle＇s circumference to its diameter．
Perpendicular：at an angle of 90° to a given surface
Formula：a mathematical relationship／rule given in symbols． $\mathrm{Eg} \mathrm{b} \times \mathrm{h}=$ area of rectangle／square
Infnity（ ∞ ）：A number without a given ending（too great to count to the end of the number）－never ends Sector：a part of the circle enclosed by two radii and an arc．
ᄂニーニーニーニーニーーーー」

area－rectangles，triangles，parallelograms R

YEAR \& - DEVELOPINg gEOMETRY... Line symmetry and reflection
 @uhisto_maths

What do I need to be able

 to do?By the end of this unit you should be able to:

- Recognise line symmetry
- Reflect in a horizontal line
- Reflect in a vertical line
- Reflect in a diagonal line

Keywords

Mirror line: a line that passes through the center of a shape with a mirror image on either side of the line
Line of symmetry: same defintion as the mirror line
Reflect: mapping of one object from one position to another of equal distance from a given ine.
Vertex: a point where two or more-line segments meet.
I Perpendicular: Ines that cross at 90°
I Horizontal a straight line from left to right (parallel to the xaxis)
I Vertical a straight ine from top to bottom (parallel to the y axis)

Rhombus
two lines of symmetry

Mirror line (line of reflection)

Shapes can have more than one line of symmetry...
This regular polygon (a regular pentagon has 5 lines of symmetry)

Reflect horizontally/vertically (1)

Parallebogram
No lines of symmetry
all points need to be the same distance away from the line of reflection

Reflection in the line y axis - this is also a reflection in the line $x=0$

Lines parallel to the x and y axis REMEMBER
Lines parallel to the x-axis are $y=$
Lines parallel to the y-axis are $x=$

Reflect Diagonally (I)

Tum your image
If you tum your image it becomes a vertical horizontal reflection (also good to check your answer this way)

Drawing perpendicular lines

Perpendicular ines to and
from the mirror line can help

YEAR \＆－REASONING WITH DATA．．． The data handling cycle

i What do I need to be able to do？
 By the end of this unit you should be able to：
 I－Set up a statistical enquiry
 I－Design and criticise questionnaires
 I－Draw and interpret multiple bar charts
 －Draw and interpret line graphs
 －Represent and interpret grouped quantitative data
 I－Find and interpret the range
 I－Compare distributions

Keywords

I Hypothesis：an idea or question you want to test
Sampling：the group of things you want to use to check your hypothesis
I Primary Data：data you collect yourself
Secondary Data：data you source from elsewhere eg the internet／newspapers／local statistics
Discrete Data：numerical data that can only take set values
Continuous Data：numerical data that has an infinite number of values（often seen with height，distance，time）
I Spread：the distance／how spread out／variation of data
I average：a measure of central tendency－or the typical value of all the data together
I Proportion：numerical relationship that compares two things

Set up a statistical enquiry

Design and criticise a questionnaire
I The Question－be clear with the question－don＇t be too leading／judgemental
egg．How much pocket money do you get a week？
Responses－do you want closed or open responses？－do any options overlap？－Have I you an option for all responses？

Pictograms，bar and line charts R

｜Pictogram

$O=4$ people
－Need to remember a key Visually able to identify mode

Bar Chart Line Chart

－Gaps between the bars －Clearly labelled axes Scale for the axes Title for the bar chart

Draw and interpret Pie Charts
 30 minutes＂

This is a frequency diagram There are no gaps between
This fraction of the 360 degrees
$L=ニ 二 ニ ニ 二 ニ ニ 二 ニ$
Grouped quantitative data

Represents quantitative data

Gaps between the lines －Clearly labelled axes －Scale for the axes －Discrete Data

Multiple method
as 60 goes into $360-6$ times．
Each frequency can be multiplied by
the degrees（proportion of 360 ）
Multiple method
as 60 goes into $360-6$ times．
Each frequency can be multiplied by
the degrees（proportion of 360 ）
Multiple method
as 60 goes into $360-6$ times
Each frequency can be multiplied by 6 to find
the degrees（proportion of 360 ）
Multiple method
as 60 goes into $360-6$ times．
Each frequency can be multiplied by
the degrees（proportion of 360 ）
Remenemera circe has 360°
There were 60 people asked in this survey （Total frequency）

Use a protractor to draw
This is 192°
discrete data，
discrete data

Multiple Bar chart compares multiple group of de ta

＂More than or equal to 25 and less than

The use of inequalities shows that this will be a frequency diagram

Grouping the data is useful if there is a large spread of data to begin with

Draw and interpret line graphs

Commonly used to show changing over time －The points are the recorded information and the lines join the points．

Line graphs do not need to start from 0

More than one piece of data can be plotted on the same graph to compare data
is possible to make estimates from the line eg temperature at 930 am is $5^{\circ} \mathrm{C}$

Find and internet the rance
Difference between the biggest and smallest values
The range is a measure of spread
a smaller range means there is less variation in the results－it is more consistent data
a range of 0 means all the data is the same value

Range of customers $=25-22=3$ （Shop I）

YEAR \＆－REASONING WITH DATA．．． Measures of location
 ＠whisto＿maths

Keywords

i What do I need to be able to do？

By the end of this unit you should be able to：
－Understand and use mean，median and mode
－Choose the most appropriate average
－Identify outliers
－Compare distributions using averages and range

Spread：the distance／how spread out／variation of data
average：a measure of central tendency－or the typical value of all the data together
Total：all the data added together
I Frequency：the number of times the data values occur
I Represent：something that show＇s the value of another
Outier：a value that stands apart from the data set
Consistent：a set of data that is similar and doesn＇t change very much

Mean，Median，Mode

The Mean
I a measure of average to find the central tendency．．．
I a typical value that represents the data

24，8，4，11， 8

The Median

The value in the center（in the middle）of the data
24，8，4，11， 8,
Put the data in order

The Mode（The modal value）

This is the number $O R$ the item that occurs the most it does not have to be numerical

$24,8,4,11,8$,

Median $=8$

Find the sum of the data（add the values） 55
I Divide the overall total by how many $55 \div 5$
I pieces of data you have
$4,8,8,11,24$
Find the value in the middle $4,8,8,11,24$ NOTE：If there is no single midde value find the mean of the two
order numbers left

I＿ーーーーーーーーーーーーーーーーーーーー
IChoosing the appropriate average

The average should be a representative of the data set－so it should be compared to the set as a whole－to check if it is an appropriate average

Here are the weekly wages of a small firm				
$£ 240$	$£ 240$	$£ 240$	$£ 240$	$£ 240$
$£ 260$	$£ 260$	$£ 300$	$£ 350$	$£ 700$

Which average best represents the weekly wage？
This can still be easier if it the data is ordered first
Mode $=8 \quad 4,8,8,11,24$

Put the data back into context
Mean／Median－too high（most of this company earn £240）
Mode is the best average that represents this wage
It is likely that the salaries above $£ 240$ are more senior staff members－their salary doesn＇t represent the average weekly wage of the majority of employers

dentify outiers

Outiers are values that stand well apart from the rest of the data

I Outliers can have a big impact on range and mean

Where an outlier is identified try to give it some context． This is likely to be a taller member of the group． Could the be an older student or a teacher？

Comparing distributions

Comparisons should include a statement of average and central tendency，as well as a statement about spread and consistency．

$$
\begin{aligned}
& \text { Here are the number of runs scored last month by Lucy and James in } \\
& \text { cricket matches } \\
& \text { Lucy: } 45,32,37,41,48,35 \\
& \text { James: 60, 90, 41,23,14,23 }
\end{aligned}
$$

Lucy
Mean： 39.6 （ldp），Median： 38 ．Mode：no mode，Range： 16 James
Mean： 418 （Idp），Median：32，Mode：23，Range： 76
＂James is less consistent that Lucy because his scores have a greater range．
Lucy performed better on average because her scores have a similar mean and a higher median＂

