YEAR 10 - SIMILARITY... @whisto_maths Congruence, similarity ε enlargement

What do I need to be able to do?

By the end of this unit you should be able
to:

- Enlarge by a positive scale factor
- Enlarge by a fractional scale factor
- Identify similar shapes
- Work out missing sides and angles in similar shapes
- Use parallel lines to find missing angles
- Understand similarity and congruence

Keywords

Enlarge: to make a shape bigger (or smaller) by a given mutipilier (scale factor)
Scale Factor: the mutipitier of enlargement
Centre of enlargement: the point the shape is enlarged from
Simiar: when one shape can become another with a reflection, rotation, enlargement or translation.
Congruent: the same size and shape
Corresponding: tems that appear in the same place in two similar situations
Paralle: straight lines that never meet (equal gradients)

Positive scale factors R
Enlargement from a point
Enlarge shape A by SF 2 from $(0,0)$

The shape is enlarged by 2

The distance from the point enlarges by 2

1) Identify similar shapes

Information in similar shapes

Co-interior angles

As angles on a line add up to 180° co-interior angles can also be calculated from applying alternate/ corresponding rules first

Similar triangles

1

Conavence and Similarity

Congruent shapes are identical - all corresponding sides and angles are the same size

Because al angles are the same, but all sides are enlarged by 2 OBC and HU are similar

I Conditions for congruent triangles
| | Triangles are congruent if they satisfy any of the following conditions
1
I I Ill three sides on the triangle are the same size

angle-side-angle

Two angles and the side connecting them are equal in two triangles

Side-angle-side
Two sides and the angle in-between them are equal in two
I triangles (it will also mean the third side is the same size on
I both shapes)
Right angle-hypotenuse-side
I The triangles both have a right angle, the hypotenuse and I one side are the same

YeAR 10 －SIMLARITY．．．

＠whisto＿maths

Trigonometry

$a: b$
$x: 100$

$a: b$ 0.07 ：x $0.07: 0.14$

When the angle is the same the ratio of sides a and b will also remain the same II

Keywords

II Enlarge：to make a shape bigger（or smaller）by a given mutipilier（scale factor）
II Scale Factor：the mutipier of enlargement
II Constant：a value that remains the same
II Cosine ratio：the ratio of the length of the adjacent side to that of the hypotenuse．The sine of the complement．
I｜Sine ratio：the ratio of the length of the opposite side to that of the hypotenuse．
II Tangent ratio：the ratio of the length of the opposite side to that of the adjacent side．
II Inverse：function that has the opposite effect．
II Hypotenuse：longest side of a right－angled triangle．It is the side opposite the right－angle

Hypotenuse，adjacent and opposite ONLY right－angled trangles are abeled in OPPOSITE
II always opposite an acute angle
II Useful to label second
II Position depend upon the angle
II
in use for the question

Tangent ratio：side lengths

$\operatorname{Tan} \theta=\frac{\text { opposite side }}{\text { adjacent side }}$

Sin，Cos，Tan：Angles
Inverse trigonometric functions

Sin and Cos ratio：side lengths

yEAR 10 －DEVELOPING ALGEBRA． Representing solutions of equations and ＠uhisto＿maths
 What do I need to be able to do？
 By the end of this unit you should be able to：
 －Form and solve equations and inequalities
 －Represent and interpret solutions on a number line as inequalities
 Draw straight line graphs and find solutions to equations
 Form and solve equations and inequalities with unknowns on both sides
 Keymords
 Solution：a value we can put in place of a variable that makes the equation true
 Variable：a symbol for a number we don＇t know yet．
 Equation：an equation says that two things are equal－it will have an equals sign $=$
 Expression：numbers，symbols and operators grouped together to show the value of something
 Identity：An equation where both sides have variables that cause the same answer includes \equiv Linear：an equation or function that is the equation of a straight line
 Intersection：the point that two lines meet
 Inequality：an inequality compares two values showing if one is greater than，less than or equal to
 another．

Form and solve inequalties R
$3(2 x+4)=30$

Expand the brackets
$6 x+12=30$
$6 x=18$

Solve
$x \longleftarrow-3 \longleftarrow-2 \longleftarrow<$
 $x>3$

Solutions on a number line

Includes the value

includes the value I

Values less than or equal to 3 but also more than－I

This includes the integer values $0,1,2,3$

Pbtting straight ine araphs \mathbb{B}

Equations：unknown on both sides R
$8 x+5=4 x+13$

$8 x+5=4 x+13$
$-4 x \quad-4 x$
$4 x+5=13$
$-5 \quad-5$
$\div 4 \begin{gathered}4 x=8 \\ x=2\end{gathered} \div 4$
ーニニニニニニニニニニニニニニニニニニニニ 7
Inequalities：unknown on both sides

$$
8 x+5 \leq 4 x+13] \longrightarrow x \leq 2
$$

any value 2 or less will satisfy this inequality

YEAR 10 - DEVELOPING ALGEBRA.
 @uhisto_maths

What do I need to be able to do?
By the end of this unit you should be able to:

- Determine whether $(x y)$ is a solition
- Solve by substituting a known variable
- Solve by substituting an expression
| - Solve graphically
I - Solve by subtracting adding equations
- Solve by adjusting equations
- Form and solve linear simutaneous

Keywords

Solution: a value we can put in place of a variable that makes the equation true
I V Variable: a symbol for a number we don't know yet.
I Equation: an equation says that two things are equal - it will have an equals sian $=$
I Substitute: replace a variable with a numerical value
I LCM: lowest common mutiple (the first time the times table of two or more numbers match)
1 Eliminate: to remove
Expression: a maths sentence with a minimum of two numbers and at least one math operation (no equals sign) Coordinate: a set of values that show an exact position
I Intersection: the point two lines cross or meet.

Is (x, y) a solution? \times and y represent values
that can be substituted into that can be substituted into an equation

Substituting known varabables.
Stephanie knows the point $x=4$ les on that line. Find the value for y.
a line has the equation $3 x+y=14$
$3 x+y=14$

$3(4)+y=14$

Two different variables, two solutions
$12+y=14$
$x=4$

$$
y=2
$$

ISOlve by subtraction
Solve craphicialy

$x=4$
$y=3$
addition makes zero pairs II Solve by adjusting one

Solve by addition

$3 x+2 y=16$
$+6 x-2 y=2$
$9 x=18$
$\div 9=2$

$$
3 x+2 y=16
$$

$$
3(2)+2(y)=16
$$

$$
6+2 y=16
$$

$$
-6 \quad-6
$$

$$
2 y=10
$$

$$
y=5
$$

By proportionally adjusting one of
29

Solve by adjusting one	12
	$\stackrel{\square}{\square}$
	n
	n n 1 1 j
$2 h+2 j=29$	$\xrightarrow{ }$
	29
	24
$2 h+2 j=24$	$\stackrel{\square}{\square+1}$
$2 h+2 j=29$	n n i i n
$2 h+2 j=29$	n n i j i
	$\xrightarrow[29]{ }$
By proportionally adjusting one of	29
the equations - now solve the	
simuttaneous equations choosing	
an addition or subtraction method	

Solve by adjusting both
$2 x+3 y=39$
$5 x-2 y=-7$

Use LCM to make equivalent x OR y values Because of the negative values using zero pairs and y values is chosen choice

$y=5$

YEAR 10 - GGOMETRY...

@uhisto_maths

angles and bearings

YEAR 10 －GGOMETRY．．．

＠uhisto＿maths

Working with circles

What do I need to be able to do？
By the end of this unit you should be able
to：
－Recognise and label parts of a circle
－Calculate fractional parts of a circle
－Calculate the length of an arc
－Undilerte the area of a sector
cyinder and spere volume of a cone，
－Understand and use surface area of a
cone，cyinder and sphere
Lニニニニニニニニニニニニニ

Circumference
an arc is a part of the circumference

Keywords

Circumference：the length around the outside of the circle－the perimeter
｜Area：the size of the 2D surface
｜Diameter：the distance from one side of a circle to another through the centre
I Radius：the distance from the centre to the circumference of the circle
I Tangent：a straight line that touches the circumference of a circle
Chord：a line segment connecting two points on the curve
Frustrum：a pyramid or cone with the top cut off
Hemisphere：haff a sphere
｜Surface area：the total area of the surface of a 3D shape
Lector（part of 1 Fractional parts of a circle a acrcle is made up of 360° the circle made from two radil）

The fraction of the circle is as $\frac{\theta}{360}$
θ represents the degrees in the sector

Var 10 - 6 faverix....

@uhisto maths

Vectors

What do I need to be able to do?
By the end of this unit you should be able
to:
Understand and represent vectors

- Use and read vector notation
- Draw and understand vectors multiplied
by a scalar
- Draw and understand addition of
vectors
- Draw and understand addition and
subtraction of vectors

Understand and represent vectors

Vector notation $\overrightarrow{D E}$ is another way to represent the vector joining the point D to the point E

$$
\overrightarrow{D E}=\binom{-3}{-1}
$$

The arrow also indicates the direction from point D to point E
addition of vectors
$\left.\begin{array}{c}\overrightarrow{A B}=\binom{3}{1} \\ =\binom{3}{1}+\left(\begin{array}{c}2 \\ 2 \\ -4\end{array}\right) \\ =\binom{3}{3} \\ 1+-4\end{array}\right)$

Vectors multiplied by a scalar

$\boldsymbol{a}=\binom{-1}{2} \boldsymbol{b}=\binom{2}{-4} \quad \boldsymbol{c}=\binom{1}{-2}$ addition and subtraction of vectors

$$
\begin{gathered}
\boldsymbol{a}=\binom{5}{1} \quad \boldsymbol{b}=\binom{0}{4} \\
\boldsymbol{a}+(-\boldsymbol{b})=\binom{5+-0}{1+}=\binom{5}{-4} \\
\text { The resultant is } \boldsymbol{a}-\boldsymbol{b} \text { because the }
\end{gathered}
$$

The vectors \boldsymbol{a} and \boldsymbol{c} are also parallel a negative scalar causes the vector to reverse direction
$\boldsymbol{b}=-2 \times \boldsymbol{a}=-\mathbf{2 a}$

$$
\boldsymbol{b}=2 \times \boldsymbol{c}=2 \boldsymbol{c}
$$

Multiply \boldsymbol{c} by 2 this becomes \boldsymbol{b}. The two ines are parallel

$$
a=-1 \times c=-c
$$

the vector to reverse direction

$$
b=-2 \times a=-2 \boldsymbol{a}
$$

year 10 - PROPORTION...

@uhisto_maths

What do I need to be able to do?
By the end of this unit you should be able to:

- Compare quantities using ratio
comparisons
- Share in a given ratio
- Lolve Ratio and scales and graphs with currency conversions
- Solve best buy' problems
- Combine ratios

Keywords
Ratio: a statement of how two numbers compare
I Equivalent: of equal value
I Proportion: a statement that links two ratios
II Integer: whole number, can be positive, negative or zero.
I Fraction: represents how many parts of a whole.
Denominator: the number below the ine on a fraction The number represent the total number of parts.
Numerator: the number above the ine on a fraction. The top number. Represents how many parts are taken
Origin: $(0,0)$ on a graph. The point the two axes cross
Gradient: The steepness of a line

YEAR 10 －PROPORTION

＠whisto＿maths
Percentages and interest
What do I need to be able to do？
By the end of this unit you should be able to：
1．Convert and compare FDP
1．Work out percentages of amounts
｜．Exprease／decrease by a given percentage number as a percentage
｜．Calculate simple and compound interest
－Calculate repeated percentage change
－Find the original value
－Solve problems with growth and decay
Lニニニニ

Keywords

Exponent：how many times we use a number in multipication It is written as a power
Compound interest：calculating interest on both the amount plus previous interest
｜Depreciation：a decrease in the value of something over time．
I Growth：where a value increases in proportion to its current value such as doubling
I Decay：the process of reducing an amount by a consistent percentage rate over time
Mutipier：the number yov are mutipling by
Equivalent：of equal value．

Percentage increase／decrease R

Simple and compound interest

| Simple interest |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| James invests |

year 10 - PROPORTION...

@whisto_maths

What do I need to be able to do?
|
| By the end of this unit you should be able to:
1- Odd, Subtract and multiply fractions
1- Find probabilities using likely autcomes
1- Use probability that sums to I

- Estimate probabilities

1. Use Venn diagrams and frequency trees

- Use sample space diagrams
- Calculate probability for independent events
- Use tree diagrams

Keywords

Event: one or more outcomes from an experiment
I Outcome: the result of an experiment
I Intersection: elements (parts) that are common to both sets
I Union: the combination of elements in two sets.
Expected Vave: the vave/ outcome that a prediction would suggest you will get
Universal Set: the set that has all the elements
Systematic: ordering values or outcomes with a strategy and sequence
Product: the answer when two or more values are multiplied together.

add, Subtract and mutiply fractions

Iadtion and Subtraction
$\frac{4}{5}-\frac{2}{3}$
$\frac{12}{15}-\frac{10}{15}=\frac{2}{15}$
Use equivalent fractions to
find a common multipl for
both denominators

Multiplication

Likeliness of a probability

The more likely an event the further up the probability it will be in comparison to another event (It will have a probability closer to I)

Experimental data

Tables, Venn diagrams, Frequency trees

YEAR 10 - DELVING INTO DATA...
 @uhisto_maths

I What do I need to be able to do?

|
| By the end of this unt you should be abe to:
1- Construct and interpret frequency tables
and polygon two-way tables, line, bar, \& pie charts
I. Find and interpret averages from a list and

a table

1. Construct and interpret time series graphs, stem and leaf diagrams and scatter graphs

Keywords

Population: the whole group that is being studied
I Sample: a selection taken from the population that will let you find out information about the larger group
I Representative: a sample group that accurately represents the population
I Random sample: a group completely chosen by change No predictability to who it will include.
Bias: a buitt-in error that makes all values wrong by a certain amount

- Primary data: data collected from an original source for a purpose.

Seconsdary dataa datat taken from an extemal boation Not colected drectly

1) autier: a value that stands apart from the data set

Two way tables R	Subgroups each have their own heading				
60 people visted the zoo one Saturday moming 26 of them were adults. 13 of the adult's favourte animal was an elephant 24 of the children's favounte animal was an elephant.		adut	Child	Total	
	Elephant	13	24	37	
	Other	13	10	23	
Extract information to input to the two-way table.	Needs subgroup totak			Overall total	

[^0]
Frequency tables and polygons

I The data in a list: $0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2$

> Mean: total number of sibinoss

I Grouped data

x Weight(g)	Frequency	Mid Point	MP \times Freq
$40<x \leq 50$	1	45	45
$50<x \leq 60$	3	65	195
$60<x \leq 70$	5	65	325

The data in a list $45,55,55,55,65,65,65,65,65$

Two way tables R

60 people visted the $z 00$ one Saturday moring 26 of them were adults 13 of the adul's favourte animal was on elephant 24 of the chidren's favourte animal was on elephant

year 10 －delung into data．．．
 ＠uhisto＿maths

What do I need to be able to do？
｜By the end of this unt you should be able to：
1－Construct and interpret frequency tables
and polygon two－way tables，ine，bar，\＆pie I charts
I．Find and interpret averages from a list and
－Construct and interpret time series graphs， stem and leaf diagrams and scatter graphs

Keywords

Population：the whole group that is being studied
Sample：a selection taken from the population that will let you find out information about the larger group
Representative：a sample group that accurately represents the population
I Random sample：a group completely chosen by change．No predictability to who it will include．
Bias：a buit－in error that makes all values wrong by a certain amount
Primary data：data collected from an original source for a purpose．
Secondary data：data taken from an external location Not colected directly
I Outier：a vave that stanos apart from the data set

IStem and leaf a nay to reperesent dita a and se to form wereraes

This stem and leaf diagram shows the age of people in a line at the supermarket．

Draw and interpret a scatter graph．

Age of Car（Years）	2	4	6	8	10
Value of Car（£s）	750	6250	4000	3500	2500

1．This data may not be given in size order
－The data forms information pairs for the scatter graph

The line of best fit R

I The Line of best fit is used to make estimates about the information in your scatter graph

Things to know

The line of best fit DOES NOT need to go through the origin（The point the axes cross）
－There should be approximately the same number of points above and below the ine It may not go through any points）
－The ine extends across the whole graph

It is only an estimate
because the line is
designed to be an average
representation of the data
It is always a straight line．

Using a lime of best fit ©

Interpolation is using the line of best fit to estimate values inside our data point．
eg 40 hours revising predicts a percentage of 45

Extrapolation is where we use our line of best fit to predict information outside of our data ＊＊This is not always useful－in this example you cannot score more that 100% So revising for longer can not be estimated＊＊

This point is an＂outier＂

It is an outlier because it doesn＇t fit this model and stands apart from the data

YEAR 10 - USING NUMBER...
 @uhisto_maths
 Non-calculator methods

YEAR 10 - USING NUMBER Types of number ε sequences
 @whisto_maths

Mutiples The "times tabe" of a given number

Keywords

I Factor: numbers we multiply together to make another number
I Multipl: the result of mutipling a number by an integer
HCF: highest common factor. The biggest factor that numbers share.
LCM: bwest common mutiple The first multiple numbers share
arithmetic: a sequence where the ifference between the terms is constant
Geometric: a sequence where each term is found by multipling the previous one by a fued nonzero number
Sequence: tems or numbers put in a pre-decided odder
I

Prime numbers

Finding the HCF and LCM
HCF - Highest common factor

$$
\text { HCF of } 18 \text { and } 30
$$

$1,2,3,6,9,18$
$1,2,3,5,6,10,15,30$

The first time their multiples match


```
eg60 30\times2 2 3 3 5 5 <2
    150 30\times5 2 < 3 5 5 < 5
```


I arithmetic/Geometric sequences

arithmetic Sequences change by a common difference. This is found by addition or subtraction between terms

Geometric Sequences change by a common ratio. This I is found my mutipication/ division between terms.

Term to term rule - how you get from one term (number in the sequence) to the next term

Position to term rule - take the rule and substitute in a position to find a term. Eg Mutiply the position number by 3 and then add 2
iother sequereses
$==$
II Fib
||

IF Finding the nth term

\square

verr 10 - ISIMG wiver...

@uhhisto maths

What do I need to be able to do?
 | By the end of this unit you should be able to:
 1- Identify square and cube numbers
 1-Calculate higher powers and roots
 I - Understand powers of 10 and standard form
 I Know the addition and subbraction rule for indices
 - Understand power zero and negative indices
 - Calculate with numbers in standard form

Keywords

Standard (index) Form: a system of writing very big or very small numbers
I Commutative: an operation is commutative if changing the order does not change the result.
I Base: The number that gets mutipied by a power
I Power: The exponent - or the number that tells you how many times to use the number in mutiplication Exponent: The power - or the number that tells you how many times to use the number in mutipication Indices: The power or the exponent.
Negative: a value below zero.
Coefficient: The number used to multiply a variable

[^0]: II Draw and interpret Pie Charts R

 | Type of pet | Dog | Cot | Hamster |
 | :--- | :--- | :--- | :--- | :--- |\quad| There were 60 people asked in this survey |
 | :--- |
 | Freevency |
 | 32 |

 Comparing Pie Charts: represents dogs $\frac{32}{60} \times 360=192^{\circ} \quad \begin{array}{r}\text { Use a protractor to draw } \quad \begin{array}{l}\text { YEED the overall } \\ \text { frequency to make any }\end{array}\end{array}$

 Ths is 192°

 averaces from lits B

 The Mean
 a measure of average to find the central tendency.. a typical value that represents the data
 $24,8,4,11,8$,

 Find the sum of the data (add the values) 55
 Divide the overall total by how many pieces of data you have
 $55 \div 5$
 Mean $=11$

 The Mode (The modal value)
 This is the number $O R$ the item that occurs the most it does not have to be numerical

 ## The Median

 The vave in the center in the modde) of the data

 ## 24, 8, 4, 11, 8,

 ## 24, 8, 4, II, 8,

 This can still be easier if it the data is ordered first

 Put the data in order $\quad 4,8,8,11,24$
 Find the value in the midolle $4,8,8,11,24$
 Median $=8$

 Mode $=8$

 NOTE:IF there s no singte midde
 vate find the mean of the two numbers eft

 For Grouped Data
 The modal group - which group has the highest frequency

